纯净、安全、绿色的下载网站

首页|软件分类|下载排行|最新软件|IT学院

当前位置:首页IT学院IT技术

python数值分析 教你怎样利用python进行数值分析

zhshuai1   2021-06-07 我要评论
想了解教你怎样利用python进行数值分析的相关内容吗,zhshuai1在本文为您仔细讲解python数值分析的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:python数值分析的用法,python数值分析,下面大家一起来学习吧。

一、准备

噪声是在拟合过程中常用的干扰手段,常用的噪声:

1.统一分布 U(a,b)

f ( x ) = { 1 i f a ≤ x < b 0 o t h e r f(x)=\begin{cases}\begin{aligned}1&\quad if\quad a\le x<b \\ 0&\quad other\end{aligned}\end{cases} f(x)={10​ifa≤x<bother​​

import numpy as np
x=np.random.uniform(a,b,100) #产生长度为100的U(a,b)

2.正态分布N( μ \mu μ, σ 2 \sigma^2 σ2)

import numpy as np
x=np.random.normal(mu, sig, 100) #产生长度为100的N(mu, sqart(sig))

二、三次样条插值

def spline_fit():
	size = 20
    x = np.linspace(-10, 10, size)
    y = np.sin(x) + np.random.normal(0, 0.1, size)
    y2 = [0] * len(y)
    # for y_i in y:

    pp.plot(x, y)
    cs = CubicSpline(x, y)
    x2 = x = np.linspace(-10, 10, size * 100)
    pp.plot(x2, cs(x2))
    pp.show()

三、最小二乘拟合

def least_square():
    f = lambda p0, xx: p0[0] * np.sin(xx * p0[1]) + p0[2]
    LEN = 100
    x = np.linspace(-1, 1, LEN)
    y = x ** 2 + 5
    # 默认情况,param只会返回求得的参数和返回的错误码,1-4为成功,5-8为失败,如果想输出更多参数,可以指定full_out=1,可以看到出错原因和其他参数
    param = leastsq(lambda p0, xx, yy: f(p0, xx) - yy, (1, 1, 1), args=(x, y)) #初值的选择比较重要,如果选取不当,容易陷入局部最优
    print(param)
    pp.scatter(x, y)
    p0 = param[0]
    pp.plot(x, f(p0, x))
    pp.show()

最小二乘的初值选取非常重要,以下是三份完全相同的数据,虽然最后都收敛了,但是初值不同,得到了完全不同的拟合结果
初值为 ( 1 , 2 , 1 ) (1,2,1) (1,2,1)

初值为(1,2,1)

初值为 ( 1 , 1 , 1 ) (1,1,1) (1,1,1)

初值为(1,1,1)

初值为 ( 10 , 10 , 1 ) (10,10,1) (10,10,1)

初值为(10,10,1)

四、拉格朗日乘子法

def lagrange()
	from scipy.optimize import minimize
    import numpy as np
    e = 1e-10
    fun = lambda x: 8 * (x[0] * x[1] * x[2])  # f(x,y,z) =8 *x*y*z
    cons = ({'type': 'eq', 'fun': lambda x: x[0] ** 2 + x[1] ** 2 + x[2] ** 2 - 1},  # x^2 + y^2 + z^2=1
            {'type': 'ineq', 'fun': lambda x: x[0] - e},  # x>=e等价于 x > 0
            {'type': 'ineq', 'fun': lambda x: x[1] - e},
            {'type': 'ineq', 'fun': lambda x: x[2] - e}
            )
    x0 = np.array((1.0, 1.0, 1.0))  # 设置初始值
    res = minimize(fun, x0, method='SLSQP', constraints=cons)
    print('最大值:', res.fun)
    print('最优解:', res.x)
    print('迭代终止是否成功:', res.success)
    print('迭代终止原因:', res.message)

相关文章

猜您喜欢

  • Flutter 底部弹窗ModelBottomSheet Flutter 底部弹窗ModelBottomSheet的使用示例

    想了解Flutter 底部弹窗ModelBottomSheet的使用示例的相关内容吗,岛上码农在本文为您仔细讲解Flutter 底部弹窗ModelBottomSheet的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:Flutter,底部弹窗,Flutter,ModelBottomSheet,下面大家一起来学习吧。..
  • vs2019 MFC 画图 vs2019 MFC实现office界面的画图小项目

    想了解vs2019 MFC实现office界面的画图小项目的相关内容吗,悲恋花丶无心之人在本文为您仔细讲解vs2019 MFC 画图的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:vs2019,MFC,画图,vs2019,MFC,下面大家一起来学习吧。..

网友评论

Copyright 2020 www.moon-script.com 【月光下载】 版权所有 软件发布

声明:所有软件和文章来自软件开发商或者作者 如有异议 请与本站联系 点此查看联系方式